

Webinar

Powering up your
Data Studio reports
with a BigQuery
NLP Pipeline

GAMEPLAY & RULES

- · Earn points by signing up, attending, and participating
 - Unlock new levels, earn badges and check our leaderboard
 - · Use #SuperSEOGame to continue the conversation
 - · Have fun!

SINGLE PLAYER of the day

JR Oakes

Senior Director, Technical SEO Research LOCOMOTIVE

We will miss you Russ!

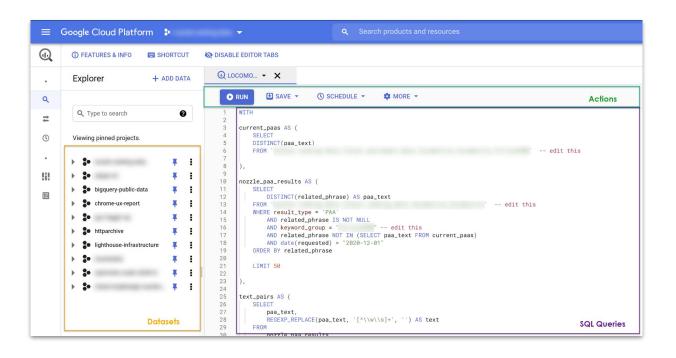
We will go on a journey to understand BigQuery ML.

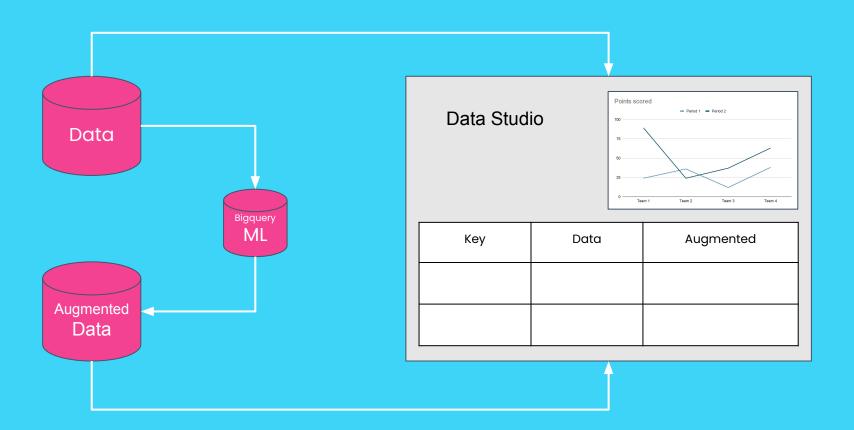
BigQuery ML allows for the hosting of Bert language models, advanced forecasting, classification tasks, and many other use cases, all easily accessible with standard SQL queries. This talk will cover the various use-cases for BigQuery ML, with examples and code. You will learn how this can make your Data Studio reporting more actionable and understandable.

What I hope to accomplish

- Introduce BigQuery ML
- Provide a few examples to play with
- Become familiar with some building blocks
- Encourage you to try, fail, succeed, and share so we can all grow


```
"@type": "Question",
  "name": What is BigQuery ML?",
  "acceptedAnswer": {
   "@type": "Answer",
   "text": "BigQuery ML lets you create and execute machine
learning models in BigQuery using standard SQL queries. BigQuery
ML democratizes machine learning by letting SQL practitioners
build models using existing SQL tools and skills. BigQuery ML
increases development speed by eliminating the need to move
data."
```

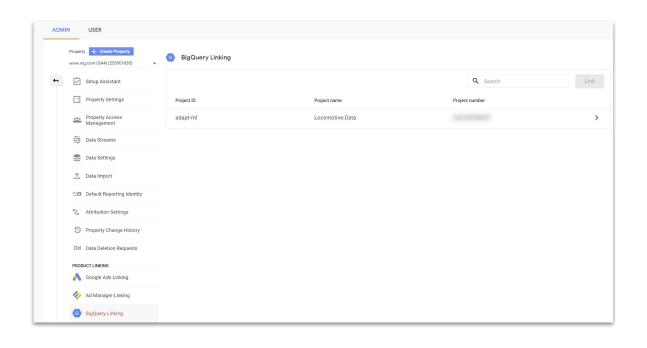


Type of Models

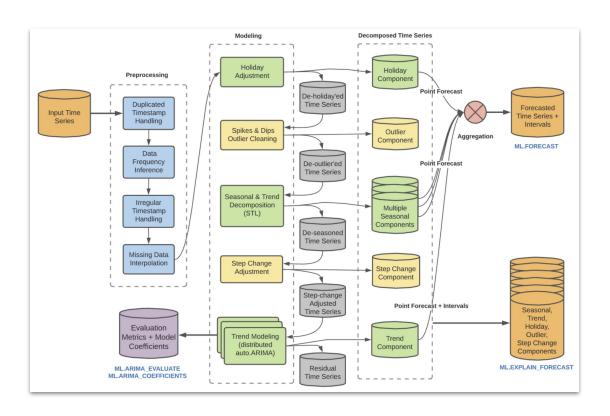
- Classification
- Clustering
- Product Recommendation
- Forecasting
- Anomaly Detection
- Custom TensorFlow Models

Forecasting

Google Analytics 4 has a direct connect to BigQuery



BigQuery ML handles all the difficult work



00000

Build Arima model from GA4 data

```
-- Build ARIMA model
CREATE OR REPLACE MODEL 'forecasting.forecast_client_name'
 OPTIONS(
    MODEL_TYPE='ARIMA_PLUS',
    TIME_SERIES_TIMESTAMP_COL='date',
   TIME_SERIES_DATA_COL='sessions',
    HOLIDAY_REGION='US'
  SELECT
    date,
    sessions.
        WITH raw_ga_4 AS (
            SELECT
            * except(row)
            FROM (
            SELECT
               -- extracts date from source table
               parse_date('%Y%m%d',regexp_extract(_table_suffix,'[0-9]+')) as table_date,
               -- flag to indicate if source table is 'events_intraday_
               case when _table_suffix like '%intraday%' then true else false end as is_intraday.
               row_number() over (partition by user_pseudo_id, event_name, event_timestamp order by event_timestamp) as row
                'adapt-ml.analytics_XXXXXXXXXXXXXXX.events_*'
            WHERE
            row = 1
        pageviews AS (
            SELECT
               parse_date("%Y%m%d", event_date) event_date,
               event_timestamp,
               user_pseudo_id,
               user_first_touch_timestamp,
               device.category as device_category,
                device.language as device_language,
               device.web_info.browser as device_browser,
                geo continent as geo continent
```

Code

Output 30-day prediction


```
-- Forecast 30 days

SELECT

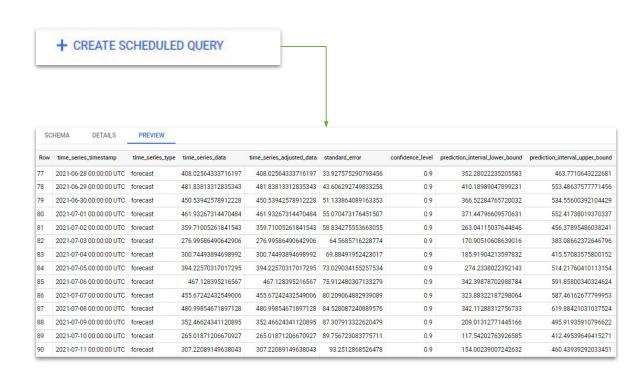
*
FROM

ML.EXPLAIN_FORECAST(MODEL forecasting.forecast_client_name,

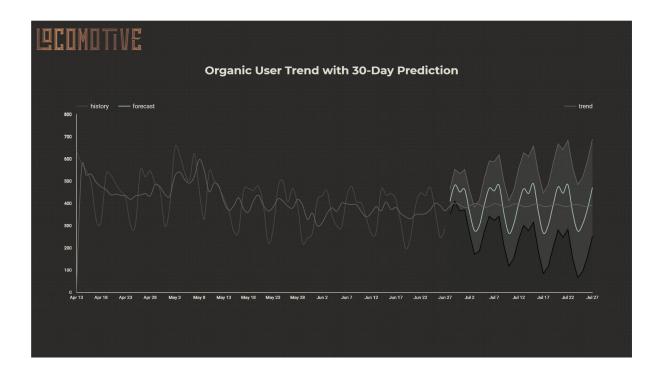
STRUCT(30 AS horizon, 0.9 AS confidence_level))
;
```

Code

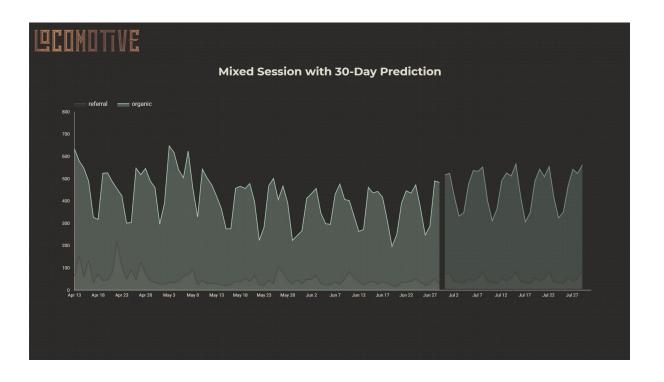
Save as scheduled query



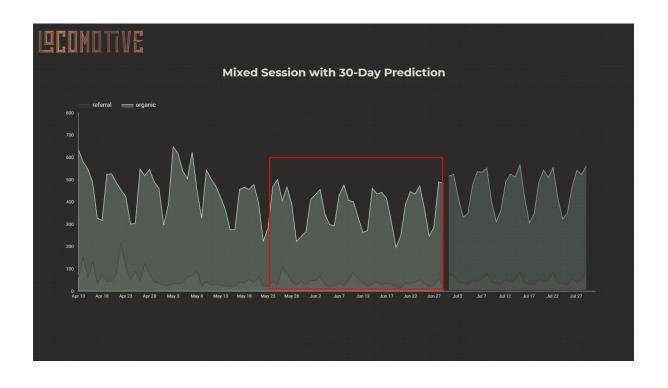
Add predictive visuals to your Data Studio reports



Add predictive visuals to your Data Studio reports



Predict historical to look for missed predictions



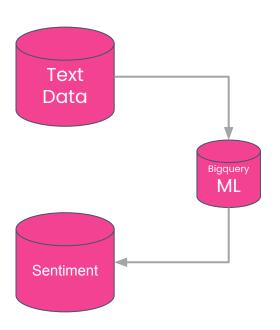
Classification

oncrawl

Nozzle gives you REALLY granular SERP data

Row	requested	adwords_search_volume	adwords_cpc	phrase	device	engine	language	result_url_domain	result_type	related_phrase
1	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	collegeconfidential.com	Organic	null
2	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	collegeconfidential.com	Sitelink	null
3	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	collegeconfidential.com	Sitelink	null
4	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	collegeconfidential.com	Sitelink	null
5	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	collegeconfidential.com	Sitelink	null
6	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	google.com	Sitelink	null
7	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	reddit.com	Organic	null
8	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	reddit.com	Sitelink	null
9	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	reddit.com	Sitelink	null
10	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	reddit.com	Sitelink	null
11	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	reddit.com	Sitelink	null
12	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	google.com	Sitelink	null
13	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	quora.com	Organic	null
14	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	quora.com	Sitelink	null
15	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	quora.com	Sitelink	null
16	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	quora.com	Sitelink	null
17	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	quora.com	Sitelink	null
18	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	google.com	Sitelink	null
19	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	null	Video	null
20	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	youtube.com	Video	null
21	2020-07-15 00:00:00 UTC	260	0.00106433	columbia waitlist	desktop	google	English	youtube.com	Video	null

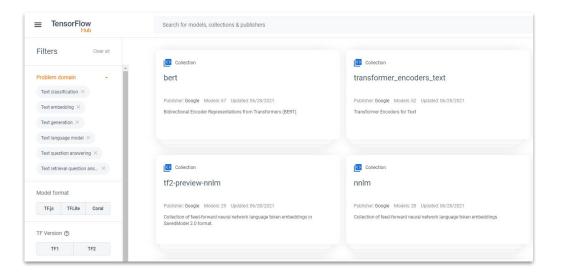
Would be cool to turn it into a brand sentiment tool



The Problem

250 MB

TensorFlow Hub hosts models to turn text into numbers



Even a bunch of BERT models

BERT encoder model	preprocessing for use with it
tensorflow/bert_en_uncased_L-12_H-768_A-12	tensorflow/bert_en_uncased_preprocess
tensorflow/bert_en_uncased_L-24_H-1024_A-16	tensorflow/bert_en_uncased_preprocess
tensorflow/bert_en_wwm_uncased_L-24_H-1024_A-16	tensorflow/bert_en_uncased_preprocess
tensorflow/bert_en_cased_L-12_H-768_A-12	tensorflow/bert_en_cased_preprocess
tensorflow/bert_en_cased_L-24_H-1024_A-16	tensorflow/bert_en_cased_preprocess
tensorflow/bert_en_wwm_cased_L-24_H-1024_A-16	tensorflow/bert_en_cased_preprocess
tensorflow/bert_zh_L-12_H-768_A-12	tensorflow/bert_zh_preprocess
tensorflow/bert_multi_cased_L-12_H-768_A-12	tensorflow/bert_multi_cased_preprocess

I can just build my own model and host on BigQuery

- Matrix Factorization for creating product recommendation systems. You can create product recommendations
 using historical customer behavior, transactions, and product ratings and then use those recommendations for
 personalized customer experiences.
- Time series for performing time-series forecasts. You can use this feature to create millions of time series models
 and use them for forecasting. The model automatically handles anomalies, seasonality, and holidays.
- Boosted Tree for creating XGBoost Z based classification and regression models.
- Deep Neural Network (DNN) for creating TensorFlow-based Deep Neural Networks for classification and regression models.
- AutoML Tables to create best-in-class models without feature engineering or model selection. AutoML Tables searches through a variety of model architectures to decide the best model.
- TensorFlow model importing. This feature lets you create BigQuery ML models from previously trained TensorFlow models, then perform prediction in BigQuery ML.
- Autoencoder for creating Tensorflow-based BigQuery ML models with the support of sparse data representations.
 The models can be used in BigQuery ML for tasks such as unsupervised anomaly detection and non-linear dimensionality reduction.

Component Parts of Model


```
def build classifier model(train dataset):
  text_input = tf.keras.layers.Input(shape=[], dtype=tf.string, name='text')
 preprocessing_layer = hub.KerasLayer(PREPROCESSOR_NAME, name='preprocessing', )
  encoder_inputs = preprocessing_layer(text_input)
 encoder = hub.KerasLayer(MODEL_NAME, trainable=True, name='BERT_encoder', )
                                                                                                      TF Hub
  outputs = encoder(encoder_inputs)
 net = outputs['pooled output']
 net = tf.keras.layers.Dense(
              int(PRECLASSIFIER DIMS),
              kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.002),
              activation="relu",
                                                                                                     Classifier
              name="pre_classifier"
          )(net)
                                                                                                       Parts
 net = tf.keras.layers.Dropout(DROPOUT)(net)
 net = tf.keras.layers.Dense(2, activation="sigmoid", use bias=True, name='classifier')(net)
 model = tf.keras.Model(text_input, net, name='sentiment_classification')
                                                                                                       Model
```


Full end-to-end notebook for training your own sentiment model and uploading to BigQuery

Model: "sentiment_classificatio	n"		
Layer (type)	Output Shape	Param #	Connected to
text (InputLayer)	[(None,)]	0	
preprocessing (KerasLayer)	{'input_word_ids': (0	text[0][0]
BERT_encoder (KerasLayer)	{'sequence_output':	11170561	<pre>preprocessing[0][0] preprocessing[0][1] preprocessing[0][2]</pre>
pre_classifier (Dense)	(None, 128)	32896	BERT_encoder[0][5]
dropout_2 (Dropout)	(None, 128)	0	pre_classifier[0][0]
classifier (Dense)	(None, 2)	258	dropout_2[0][0]
Total params: 11,203,715 Trainable params: 11,203,714 Non-trainable params: 1			

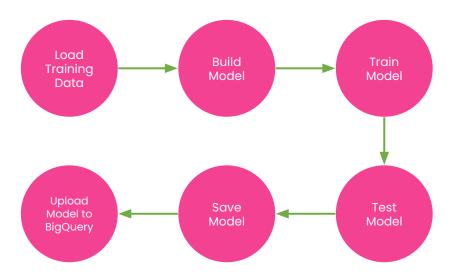
Code Article

Training Data Options

The Stanford Sentiment Treebank SST-2 dataset contains 215,154 phrases with fine-grained sentiment labels in the parse trees of 11,855 sentences from movie reviews. Models performances are evaluated either based on a fine-grained (5-way) or binary classification model based on accuracy. (source)

This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. (source)

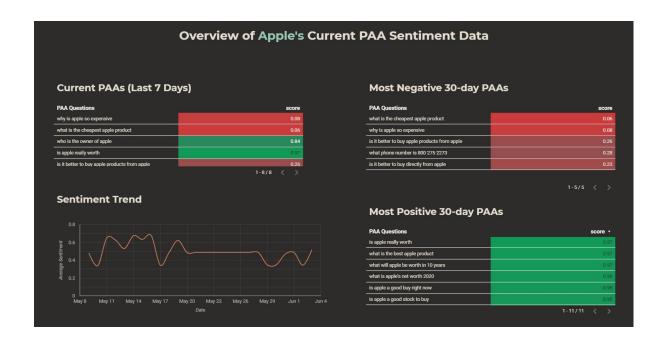
Steps in the Colab Notebook



Sentiment model available when needed

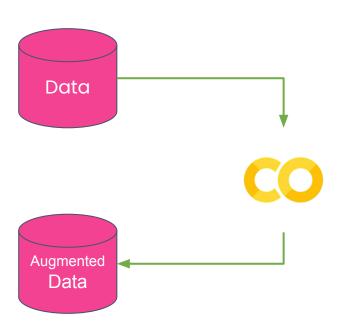
	bigquery_ml.sentiment', REPLACE(paa_text, '[^\\w\\s]+',	'') AS text FROM nozzle_paa_results)) '') AS text FROM nozzle_paa_results) USING (text)	
)	Row paa_text	score	
SELECT * FROM predictions;	1 why is ge stock so bad?	0.03	
	2 why is comcast so bad?	0.031	
	3 why is allstate so bad?	0.031	
	4 why was anthem so bad?	0.031	
	5 why is frontier internet so ba	ad? 0.031	
	6 why is american express so	bad? 0.031	
	7 why is anthem so bad?	0.031	
	8 why is centurylink so bad?	0.031	
	9 is dollar general a bad place	e to work? 0.031	
	10 why is apple so bad?	0.032	
	11 why is anthem game so bad	d? 0.032	
	12 is frontier communications	stock worthless? 0.032	
	13 is microsoft bad?	0.032	
	14 is hp a bad laptop?	0.032	
	15 why is starbucks so bad?	0.032	

Allows for highlighting important trends



Clustering

Some things are difficult in TensorFlow



@ **@**

TFHub converts text into n-dimensonal pooled outputs

```
[16] 1 cluster.get encoded(['export more than 5000 rows google analytics'])['pooled output']
     <tf.Tensor: shape=(1, 512), dtype=float32, numpy=
     array([[ 4.31210071e-01, 3.72204751e-01, 4.32841897e-01,
             7.99269855e-01, 5.91591954e-01, -4.85236228e-01,
             -5.35845697e-01, -6.24034166e-01, 5.05522072e-01,
             9.96166408e-01, -4.18141454e-01, -8.83240640e-01,
             6.15609944e-01, -2.68304348e-01, -6.27349734e-01,
             8.65133822e-01, -9.96641695e-01, 9.94911909e-01,
             1.09758243e-01, -9.91118193e-01, 8.75520289e-01,
             2.58417249e-01, 3.22697222e-01, -1.72956213e-02,
            -2.35691980e-01, 7.93872168e-04, 2.05544695e-01,
             3.98988545e-01, 5.89602590e-01, 2.64404029e-01,
             1.16417259e-01, 2.54679620e-01, 4.16897982e-01,
             3.29535037e-01, -2.40083560e-01, -9.69020963e-01,
             1.09754995e-01, -3.35454792e-01, 8.95521700e-01,
             -8.41044486e-01, -9.82097983e-02, -4.03535336e-01,
             -2.88857818e-01, -2.32576534e-01, -6.16090238e-01,
             6.53401017e-01, 2.10129172e-01, -1.98760211e-01,
             8.97522628e-01, -5.93671322e-01, 2.25686450e-02,
             9.81816351e-01, -1.60790216e-02, 9.97705579e-01,
```


Umap reduces to 2D while keeping much of the semantic information


```
encoded = cluster.get encoded(df['Top queries'].tolist()[:100])['pooled output']
         reduced = cluster.get_reduced(encoded,
                                       neighbors=20)
         reduced
ray([[ 9.061797 , 13.931413 ],
            7.922755 , 13.170953 ],
            5.070562 , 15.17328 ],
            8.218638 , 15.458736 ],
            7.167097 , 13.543527 ],
            5.4804506, 14.035787 ],
            5.8768635, 14.676909 ],
            4.8549867, 16.21587 ],
           7.919964 , 13.961714 ],
            7.300527 , 13.539764 ],
            7.98836 , 15.114539 ],
            4.740223 , 14.414347 ],
            7.161938 , 16.11412 ],
            6.429485 , 15.984068 ],
            5.1955585, 14.296892 ],
            7.2378354, 13.65459 ],
            6.612344 , 13.720347 ]
```


HDBScan takes the 2D vectors and creates the right number of clusters

Not having to pre-specify the number of clusters is the key benefit of HDBScan over K-Means

Apply category data back to original data

labels_text	labels	Position	CTR	Impressions	Clicks	Top queries	
locomotive agency	4	1.81	0.2046	1173	240	locomotive agency	0
google analytics export more than 5000	1	1.02	0.1607	417	67	google analytics export more than 5000	1
export more than 5000 rows google analytics	2	1.09	0.4752	141	67	export more than 5000 rows google analytics	2
locomotive seo	0	1.34	0.6087	92	56	locomotive seo	3
google analytics export more than 5000	1	1.00	0.6222	90	56	google analytics export more than 5000 rows	4
google analytics export all rows	5	2.32	0.4109	129	53	google analytics export all rows	5
google analytics export all rows	5	1.45	0.4796	98	47	how to export more than 5000 rows in google an	6
export more than 5000 rows google analytics	2	4.56	0.0269	484	13	google analytics export full report	7
locomotive agency	4	1.90	0.0579	190	11	adapt partners	8
google analytics export all rows	5	4.78	0.1538	65	10	datadog export more than 5000	9

<u>Code</u>

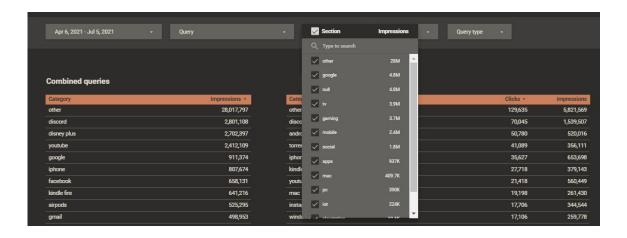
~ 2 hours to clean data and adjust category labels

Upload CSV to Google Sheets

Merge category data in Data Studio

Apr 6, 2021 - Jul 5, 2021	Query	• Section •	Category •	Query type -	
Combined queries					
Category	Impressions +	Category		Clicks •	Impressions
other	28,017,797	other		129,635	5,821,569
discord	2,801,108	discord		70,045	1,539,507
disney plus	2,702,397	android		50,780	520,016
youtube	2,412,109	torrent		41,089	356,111
google	911,374	iphone		35,627	653,698
iphone	807,674	kindle fire		27,718	379,143
facebook	658,131	youtube		21,418	560,449
kindle fire	641,216	mac		19,198	261,430
airpods	525,295	instagram		17,706	344,544
gmail	498,953	windows 10		17,106	259,778
kodi	435,354	tv		14,904	330,186
mac	409,665	disney plus		14,901	359,635
netflix	354,174				1-76/76 < >
instagram	344,947				

Filter all GSC data by Section, Category, and Type



https?://[^/]+/([^/]+)

Extension

```
-- Euclidean squared distance
        CREATE TEMPORARY FUNCTION td(a ARRAY<FLOAT64>, b ARRAY<FLOAT64>, idx INT64) AS (
           (a[OFFSET(idx)] - b[OFFSET(idx)]) * (a[OFFSET(idx)] - b[OFFSET(idx)])
        CREATE TEMPORARY FUNCTION term_distance(a ARRAY<FLOAT64>, b ARRAY<FLOAT64>) AS ((
           SELECT SQRT(SUM( td(a, b, idx))) FROM UNNEST(GENERATE_ARRAY(0, 19)) idx
        ));
   10
        SELECT
  11
            term_distance(arr1,arr2) as same,
  12
            term_distance(arr3,arr4) as different,
  13
  14
       FROM (
  15
       SELECT
            (SELECT encoder FROM ML.PREDICT(MODEL `adapt-ml.bigquery_ml.embedding_model`,(SELECT 'the cat is crazy'AS text))) AS arr1,
   16
  17
            (SELECT encoder FROM ML.PREDICT(MODEL `adapt-ml.bigquery_ml.embedding_model`,(SELECT 'the cat is crazy' AS text))) AS arr2,
  18
            (SELECT encoder FROM ML.PREDICT(MODEL `adapt-ml.bigquery_ml.embedding_model',(SELECT 'to be or not to be'AS text))) AS arr3,
  19
            (SELECT encoder FROM ML.PREDICT(MODEL `adapt-ml.bigquery_ml.embedding_model`,(SELECT 'windows was developed by bill gates' AS text))) AS arr4
  20
 Query results
                           SAVE RESULTS
                                               ™ EXPLORE DATA ▼
  Query complete (10.9 sec elapsed, 48.6 MB processed)
   Job information Results JSON Execution details
Row same different
      0.0 1.7741975061302246
```

<u>Code</u>

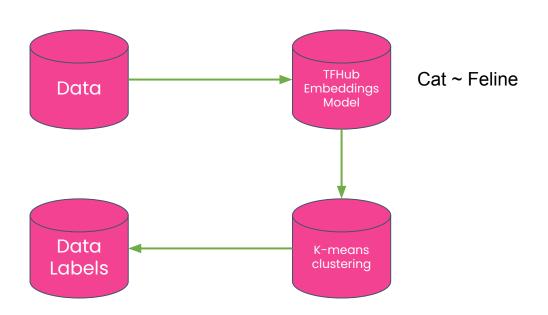
Clustering in BigQuery

Problem:

No way to separate posts by performance groupings


```
/blog/post-id-247748378
/blog/post-id-258398959
/blog/post-id-189489937
/blog/post-id-387588274
```


Structure



Use TensorFlow Hub to create an embedding model


```
tfhub handle encoder = map name to handle[MODEL NAME]
tfhub_handle_preprocess = map_model_to_preprocess[MODEL_NAME]
def build_embedding_model():
 text_input = tf.keras.layers.Input(shape=[], dtype=tf.string, name='text')
  preprocessing layer = hub.KerasLayer(tfhub handle preprocess, name='preprocess', )
  encoder inputs = preprocessing layer(text input)
  encoder = hub.KerasLayer(tfhub handle encoder, trainable=True, name='encoder', )
 outputs = encoder(encoder inputs)
 net = outputs['pooled_output']
 model = tf.keras.Model(text input, net)
 model.summary()
  return model
model = build embedding model()
```


Upload to BigQuery ML


```
client = bigquery.Client(project=PROJECT_ID, location="US")
dataset = client.create_dataset('bigquery_ml', exists_ok=True)

Initialize model with BigQuery

Initialize model with BigQuery

CREATE OR REPLACE MODEL bigquery_ml.embedding_model
OPTIONS (MODEL_TYPE='TENSORFLOW', MODEL_PATH='gs:// /embedding_model/*')

6
```


Create K-Means model with embeddings


```
CREATE OR REPLACE MODEL 'bigquery_ml.title_test'
OPTIONS(model_type='kmeans',
        num_clusters = 5,
       DISTANCE_TYPE = 'cosine',
        kmeans_init_method = 'KMEANS++') AS
    WITH
   raw_ga_4 AS (
        SELECT
        * except(row)
        FROM (
        SELECT
            -- extracts date from source table
            parse_date('%Y%m%d',regexp_extract(_table_suffix,'[0-9]+')) as table_date,
            -- flag to indicate if source table is 'events_intraday_'
            case when _table_suffix like '%intraday%' then true else false end as is_intr
            row_number() over (partition by user_pseudo_id, event_name, event_timestamp
            'adapt-ml.analytics_266065389.events_*'
        WHERE
        row = 1
```

Code

Save labeled data to new table

0	27 28 bigguery_ml.title_test	
- 5	29 SELECT text, CENTROID_ID, FROM	
	30 M. PREDICT(MODEL bigquery_ml.title_test',	
3	31 (
- 57	32 SELECT * FROM arrays	
	33)) 34 WHERE CENTROID ID = 5	
	35 WHERE CENTROID_ID = 5	
(Query results	
low	text CEI	NTROID_ID
	text CEI Immersive Learning Engagement opportunity Inperson	NTROID_ID
		5
	Immersive Learning Engagement opportunity Inperson	5
	Immersive Learning Engagement opportunity Inperson is an Assistant Professor of Communication and an advisor to y	20
	Immersive Learning Engagement opportunity Inperson is an Assistant Professor of Communication and an advisor to y Delta Kappa Gamma Provide Scholarship to WPU Students	5
Row	Immersive Learning Engagement opportunity Inperson is an Assistant Professor of Communication and an advisor to y Delta Kappa Gamma Provide Scholarship to WPU Students / Liberal Arts in	5 5
	Immersive Learning Engagement opportunity Inperson is an Assistant Professor of Communication and an advisor to y Delta Kappa Gamma Provide Scholarship to WPU Students ' Liberal Arts in School of Professional Studies NonTraditional 2021	5 5 5
	Immersive Learning Engagement opportunity Inperson is an Assistant Professor of Communication and an advisor to y Delta Kappa Gamma Provide Scholarship to WPU Students ' Liberal Arts in School of Professional Studies NonTraditional 2021 Accelerated RN to BSN Nursing Program	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Areas left to explore

- Product Recommendation
- Anomaly Detection in Traffic and Rankings
- SERP Title Sentiment
- Query entity extraction
- Question answering

Please Share your Code!

Grab your controller, it's time for Q&A!